方法验证报告模板

生活饮用水标准检验方法第 13 部分: 放射性指标 GB/T 5750.13-2023

方法验证/确认报告

方法:	厚源法
验证人员:	日期:
审核人员:	日期:
批准人员:	日期:

项目: ______水中总α、总β放射性检测

检测方法验证/确认报告

受控编号:

检测方 法名称	生活饮用水标准检验方法第 13 部分: 放射性指标 GB/T 5750.13-2023 4.1.8.3 厚源法
 确认目的	□标准变更 □实验室设计(制定)的方法
1/用 (八 曰 口)	□引入新的标准方法 □非标准方法
方法验证/ 确认依据	□GB/T 27417-2017 □GB/T 32465-2015 □HJ 168-2020 □ 其他
方法验证/ 确认技术 要点	□线性回归方程 □相关系数 □线性范围 □方法的检出限 □方法的定量下限 □精密度试验 □正确度试验 □测量不确定度 □其它
仪器设备	FYFS-400X 低本底α/β测量仪
验证人员	
试验环境	方法无特殊要求
标准物质	HAm241221503 ²⁴¹ Am 标准粉末 K40221503 ⁴⁰ K 标准粉末
主要试剂	硝酸、硫酸、硫酸钙、无水乙醇
实验记录	见附件(提供实验结果记录与报告)
验证结论	生活饮用水标准检验方法第 13 部分: 放射性指标 GB/T 5750.13-2023 4.1.8.3 厚源法的操作程序,所需人员、仪器设备、试剂及环境条件等满足风险监测要求,建议执行新标准。
++	验证负责人: 年 月 日
技术负责人	思见:

1、目的

对水中的放射性指标检测方法进行验证,确保方法可行性,以便为有效评价水中总 α 放射性活度浓度、总 β 放射性活度浓度提供依据。

2、适用范围

本规程适用于生活饮用水/或水源水中 α 放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总 α 放射性活度、 β 放射性核素(不包括本文件规定下具有挥发性的核素)的总 β 放射性活度浓度、铀的质量浓度和 226 Ra 的活度浓度。测定含盐水和矿化水的总 α 放射性、总 β 放射性、铀和 226 Ra 参照使用。

3、检测原理

将水样酸化,蒸发浓缩,转化为硫酸盐,蒸发至硫酸冒烟完毕,于 350℃灼烧。残渣转移至样品盘中制成样品源后,立即进行α计数测量。 通过测量α标准源校准计算水中总α放射性的活度浓度,本方法厚源法 4.1.8.3。本方法的探测下限取决于水样所含无机盐量、仪器的计数效率、本底计数率、计数时间等多种因素,约为 0.02 Bq/L。

4、实验室基本情况

表 4-1 参加验证人员情况登记表

姓名	性别	职称	所学专业	从事相关分析工作年限

表 4-2 使用仪器情况登记表

仪器名称	仪器编号	型号、厂家	性能状况
			计量/校准状态
低本底α/β测量仪	A440	FYFS-400X、方圆科技	校准合格 2023.7.5-2025.7.4

表 4-3 使用试剂情况登记表

名称	生产厂家	规格
硝酸	国药集团化学试剂有限公司	GR×500mL
硫酸	广东汕头西陇化工厂	GR×500mL
硫酸钙	大茂	GR×500g
²⁴¹ Am 标准粉末	中国原子能科学研究院	5g
40K 标准粉末	中国原子能科学研究院	5g
无水乙醇	天津光复科技发展有限公司	AR×500mL

5、验证步骤、验证程序

5.1 本底测量

按 GB/T 5750.13-2023 4.1.8.4 进行测量。

5.2 试剂样品预处理

分别取一定量的 ²⁴¹Am α标准源粉末、⁴⁰K β标准源粉末,研磨成细粉,经 350℃烘干半小时取出,干燥器内冷却 2 小时备用。水样按每 1L 水加 20mL 硝酸酸化,并预实验微沸蒸发得到无机盐含量。

5.3 样品处理

按 GB/T 5750.13-2023 4.1.6 生活饮用水标准检验方法第 13 部分: 放射性指标水样的操作程序制备试样,后按 GB/T 5750.13-2023 4.1.7 进行样品源的制备。

5.4 双通道α、β本底

依据《生活饮用水标准检验方法 GB/T 5750-2023》第 13 部分 放射性指标 4.1.8.1.4 进行测量得到本底值

表 5-1 双通道本底值

编号	α1	β1	α2	β2
n _b (cps)	0. 00025	0. 029	0. 00046	0. 025

5.5 方法的探测下限

依据《生活饮用水标准检验方法 GB/T 5750-2023》第 13 部分 放射性指标 4.1.10 进行测量计算获得探测限。

表 5-2 样品探测限

编号	α1 β1 α2		α2	β2	
Cm(Bq/L) 探测限	0.008	0. 020	0. 011	0. 017	

5.6 精密度实验

取 2 份不同活度的水样品,完成前处理制样后,分别测量 6 次,统计多次测量结果并计算相对标准偏差:

平行号		试样			
		α1	β1	α2	β2
	1	0. 154	0. 298	0. 237	0. 489
\Tid ⇌ ¼±	2	0. 143	0. 274	0. 224	0. 476
测定结 果	3	0. 138	0. 265	0. 228	0. 481
(Bq/L)	4	0. 149	0. 288	0. 247	0. 456
(Dq/L)	5	0. 156	0. 292	0. 245	0. 450
	6	0. 140	0. 261	0. 230	0. 448
平均值	(Bq/L)	0. 147	0. 280	0. 235	0. 467
标准偏差 (Bq/L)		0.007	0.015	0.009	0.018
相对标准	偏差 RSD%	5. 096	5. 431	4.002	3. 750

5.7 加标回收试验

α1 标准粉末源 0.1933 g (含 2.00 Bq)

β1 标准粉末源 0.1231 g (含 1.79 Bq),

α2 标准粉末源 <u>0.1933</u> g (含 2.00 Bq)

与待测样品同时处理并测量总α、总β放射性。

表 5-3 总α、总β放射性加标回收率表

测量对象	样品值(Bq)	加标值(Bq)	加标样品值(Bq)	回收率 (%)
样品总α1	0.020	2.000	1.814	89.7
样品总α1	0.019	2.000	1.775	87.8
样品总α1	0.021	2.000	1.904	94.2
样品总α2	0.034	2.000	1.897	93.2
样品总α2	0.030	2.000	1.799	88.5
样品总α2	0.029	2.000	1.743	85.7
样品总β1	0.044	1.790	1.869	102.0
样品总β1	0.040	1.790	1.803	98.5
样品总β1	0.045	1.790	1.816	98.9
样品总β2	0.114	1.790	1.884	98.9
样品总β2	0.106	1.790	1.945	102.7
样品总β2	0.110	1.790	1.830	96.1

5.8 不确定度分析

以 1 路 β 测量来分析不确定度,计数效率的不确定由计数统计误差和放射源活度不确定度决定;回收率的不确定度由计数统计误差、放射源活度不确定度和计数效率不确定度决定;最终结果活度浓度的不确定度由水样残渣的质量(W)、与水样质量厚度相对应的仪器 β 计数效率 δ 、放射性回收率(F)、称取的水残渣质量(m)和水样体积(V)决定。

表 5-4 计数效率不确定分析 uB,2

本底测量	本底计数	β源测量时	β源计数	β源不确定	计数效率不确定 U B,2
时间 (s)	率 (s-1)	间 (s)	率 (s ⁻¹)	度 (%)	(%)
60000	0.029	24000	0.889	4.0	4.06

表 5-5 回收率不确定分析 uB,3

本底测量	本底计数	回收β源测	回收β源	β源不确定	回收率不确定 U B,3
时间 (s)	率 (s ⁻¹)	量时间(s)	计数率(s-1)	度(%)	(%)
60000	0.029	24000	0.636	4.0	4.15

表 5-6 计数统计不确定分析 uA

本底测量	本底计数	 样品测量时	样品计数	计数统计不确定 U A
时间 (s)	率 (s ⁻¹)	间 (s)	率(s ⁻¹)	(%)

60000	0.029	24000	0.325		1.26
-------	-------	-------	-------	--	------

表 5-7 浓度合成不确定分析 uC

		分析						合成
总残	称取的	天平	总残渣	称取的残		量筒的	水样体积的	不确
渣量	残渣量	的半	的不确	渣不确定	水样体积	半宽度	不确定度	定度
(mg)	(mg)	宽度	定 U B,1	度 U _{B,4}	(L)	(mL)	U _{B,5} (%)	U c
		(mg)	(%)	(%)				(%)
354.8	160.0	0.05	0.01	0.02	2.0	2.5	0.07	5.94

扩展不确定度 U=kUc=12%

6、验证结论

- 6.1 本实验样品的检出限均小于或等于生活饮用水标准检验方法第 13 部分 GB/T 5750.13-2023 探测下限,符合要求。
- 6.2 本实验的α加标回收率均 85%~95%之间,β加标回收率在 95%~105%之间。
- 6.3 通过实际样品检测、空白实验、重复性实验、加标实验及不确定度分析,检验人员均已充分理解生活饮用水标准检验方法 GB/T 5750-2023 第 13 部分 放射性指标的操作程序方法要求、步骤、熟悉检测仪器,已具备该项目的检测能力。